On the Embedded Eigenvalues and Dense Point Spectrum of the Stark-Like Hamiltonians

The point spectrum lying on the essential spectrum is investigated for the one‐dimensional Schrödinger operator \documentclass{article}\pagestyle{empty}\begin{document}$ \- \frac{{d^2 }}{{dx^2 }} + q(x) $\end{document} with decaying potential q, and weakly perturbed Stark‐like operator \documentclas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 1997, Vol.183 (1), p.185-200
Hauptverfasser: Naboko, Sergei N., Pushnitski, Alexander B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The point spectrum lying on the essential spectrum is investigated for the one‐dimensional Schrödinger operator \documentclass{article}\pagestyle{empty}\begin{document}$ \- \frac{{d^2 }}{{dx^2 }} + q(x) $\end{document} with decaying potential q, and weakly perturbed Stark‐like operator \documentclass{article}\pagestyle{empty}\begin{document}$ - \frac{{d^2 }}{{dx^2 }} - \left| x \right|^\alpha {\rm sign }x + q(x). $\end{document} An elementary constructive technique is developed to obtain various results concerning embedded eigenvalues of Schrödinger operators. In Section 3 a constructive example of the Stark ‐ like operator with the potential q decaying slightly slowlier than o(1/|x|1‐α/2)and dense point spectrum on the whole real axis is presented.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.19971830112