Chemical Kinetics, Simulation, and Thermodynamics of Glycolytic Depolymerization of Poly(ethylene terephthalate) Waste with Catalyst Optimization for Recycling of Value Added Monomeric Products

Reaction of poly(ethylene terephthalate) (PET) waste powder with ethylene glycol (EG) was carried out in a batch reactor at 1 atm pressure and at various temperatures ranging from 100–220 °C at the intervals of 10 °C. Particle size from 50–512.5 μm, reaction time from 30–150 min, amount of catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2003-04, Vol.288 (4), p.326-336
Hauptverfasser: Goje, A. S., Mishra, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reaction of poly(ethylene terephthalate) (PET) waste powder with ethylene glycol (EG) was carried out in a batch reactor at 1 atm pressure and at various temperatures ranging from 100–220 °C at the intervals of 10 °C. Particle size from 50–512.5 μm, reaction time from 30–150 min, amount of catalyst from 0.001–0.009 mol, and type of catalysts required for glycolysis of PET were optimized. To increase the PET weight (%) loss, various external catalysts were introduced during the reaction at different reaction parameters. Depolymerization of PET was increased with reaction time and temperature. Depolymerization of PET was decreased with increase in the particle size of PET. Reaction rate was found to depend on concentrations of liquid ethylene glycol and ethylene diester groups in the polyester. Analyses of value added monomeric products (DMT and EG) as well as PET were undertaken. Yields of monomers were agreed with PET conversion. A kinetic model was proposed and simulated, and observed consistent with experimental data. Comparisons of effect of various amounts of catalysts and type of catalysts on glycolysis rate were undertaken. Dependence of the rate constant on reaction temperature was correlated by Arrhenius plot, which shows activation energy of 46.2 kJ/mol and Arrhenius constant of 99 783 min−1. Arrhenius plot of the rate constant of glycolysis at 1 atm pressure for 127.5 μm PET particle size (KZA = rate constant using zinc acetate as a catalyst, KMA = rate constant using manganese acetate as a catalyst).
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.200390034