The tree property and the continuum function below

We say that a regular cardinal κ, , has the tree property if there are no κ‐Aronszajn trees; we say that κ has the weak tree property if there are no special κ‐Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal , , is consis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2018-04, Vol.64 (1-2), p.89-102
Hauptverfasser: Honzik, Radek, Stejskalová, Šárka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a regular cardinal κ, , has the tree property if there are no κ‐Aronszajn trees; we say that κ has the weak tree property if there are no special κ‐Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal , , is consistent with an arbitrary continuum function below which satisfies , . Next, starting with infinitely many Mahlo cardinals, we show that the weak tree property at every cardinal , , is consistent with an arbitrary continuum function below which satisfies , . Thus the tree property has no provable effect on the continuum function below except for the trivial requirement that the tree property at implies for every infinite κ.
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.201600028