Turning decision procedures into disprovers

A class of many‐sorted polyadic set algebras is introduced. These generalise structure and model in a way that is relevant in regards to the Entscheidungsproblem and to automated reasoning. A downward Löwenheim‐Skolem property is shown in that each satisfiable finite conjunction of purely relational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2009-01, Vol.55 (1), p.87-104
1. Verfasser: Rognes, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of many‐sorted polyadic set algebras is introduced. These generalise structure and model in a way that is relevant in regards to the Entscheidungsproblem and to automated reasoning. A downward Löwenheim‐Skolem property is shown in that each satisfiable finite conjunction of purely relational first‐order prenex sentences has a finite generalised model. This property does, together with a construction related to doubling the size of a finite structure, provide several strict generalisations of the strategy of finite model search for disproving. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.200710083