Quantifier elimination for the theory of algebraically closed valued fields with analytic structure

The theory of algebraically closed non‐Archimedean valued fields is proved to eliminate quantifiers in an analytic language similar to the one used by Cluckers, Lipshitz, and Robinson. The proof makes use of a uniform parameterized normalization theorem which is also proved in this paper. This theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2007-06, Vol.53 (3), p.237-246
1. Verfasser: Çelikler, Yalın F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theory of algebraically closed non‐Archimedean valued fields is proved to eliminate quantifiers in an analytic language similar to the one used by Cluckers, Lipshitz, and Robinson. The proof makes use of a uniform parameterized normalization theorem which is also proved in this paper. This theorem also has other consequences in the geometry of definable sets. The method of proving quantifier elimination in this paper for an analytic language does not require the algebraic quantifier elimination theorem of Weispfenning, unlike the customary method of proof used in similar earlier analytic quantifier elimination theorems. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.200610042