A local normal form theorem for infinitary logic with unary quantifiers

We prove a local normal form theorem of the Gaifman type for the infinitary logic L∞ω(Qu)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht‐Fraïssé type game similar to the one in [9]. A consequence is that every sentence of L∞ω(Qu)ω of quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2005-02, Vol.51 (2), p.137-144
Hauptverfasser: Jerome Keisler, H., Boulos Lotfallah, Wafik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a local normal form theorem of the Gaifman type for the infinitary logic L∞ω(Qu)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht‐Fraïssé type game similar to the one in [9]. A consequence is that every sentence of L∞ω(Qu)ω of quantifier rank n is equivalent to an infinite Boolean combination of sentences of the form (∃≥iy)ψ(y), where ψ(y) has counting quantifiers restricted to the (2n–1 – 1)‐neighborhood of y. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.200410013