A local normal form theorem for infinitary logic with unary quantifiers
We prove a local normal form theorem of the Gaifman type for the infinitary logic L∞ω(Qu)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht‐Fraïssé type game similar to the one in [9]. A consequence is that every sentence of L∞ω(Qu)ω of quanti...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2005-02, Vol.51 (2), p.137-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a local normal form theorem of the Gaifman type for the infinitary logic L∞ω(Qu)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht‐Fraïssé type game similar to the one in [9]. A consequence is that every sentence of L∞ω(Qu)ω of quantifier rank n is equivalent to an infinite Boolean combination of sentences of the form (∃≥iy)ψ(y), where ψ(y) has counting quantifiers restricted to the (2n–1 – 1)‐neighborhood of y. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.200410013 |