Existentially Incomplete Tame Models and a Conjecture of Ellentuck

We construct a recursive ultrapower F/U such that F/U is a tame 1‐model in the sense of [6, §3] and FU is existentially incomplete in the models of II2 arithmetic. This enables us to answer in the negative a question about closure with respect to recursive fibers of certain special semirings Γ of is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 1999, Vol.45 (2), p.189-202
1. Verfasser: McLaughlin, Thomas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a recursive ultrapower F/U such that F/U is a tame 1‐model in the sense of [6, §3] and FU is existentially incomplete in the models of II2 arithmetic. This enables us to answer in the negative a question about closure with respect to recursive fibers of certain special semirings Γ of isols termed tame models by Barback. Erik Ellentuck had conjuctured that all such semirings enjoy the closure property in question. Our result is that while many do, some do not.
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.19990450204