UV Assisted Surface Modification of Polystyrene in the Presence of Trialkylsilanes

A process for the photochemical modification of polystyrene (PS) surfaces employing organosilane compounds has been developed. Polystyrene was irradiated in presence of trialkylsilanes [ethyldimethylsilane (EDMS), trimethylsilane (TrMS)]. UV irradiation was carried out with a medium pressure (MP) Hg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2005-11, Vol.206 (22), p.2248-2256
Hauptverfasser: Spanring, Julia, Buchgraber, Christian, Ebel, Maria F., Svagera, R., Kern, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A process for the photochemical modification of polystyrene (PS) surfaces employing organosilane compounds has been developed. Polystyrene was irradiated in presence of trialkylsilanes [ethyldimethylsilane (EDMS), trimethylsilane (TrMS)]. UV irradiation was carried out with a medium pressure (MP) Hg lamp and a 193 nm ArF* excimer laser. FT‐IR and X‐ray photoelectron spectroscopy (XPS) evidenced that after irradiation alkylsilyl groups were covalently bond to the polymer surface. Contact angle measurements proved a significant lowering in surface energy of polystyrene as a result of the photomodification process. When EDMS was used as photoreactive reagent, the introduction of SiH groups onto the polymer surface was also found. The introduction of SiH bonds onto polymer surfaces provides new possibilities for further surface functionalization. Atomic force microscopy (AFM) showed that Hg lamp irradiation does not exert significant changes in surface topography, while 193 nm excimer laser irradiation leads to surface corrugation. Summing up, it is demonstrated that organosilanes can be employed in UV reactions to attach silyl and also SiH groups onto polystyrene surfaces. Possible reaction mechanisms are discussed.
ISSN:1022-1352
1521-3935
DOI:10.1002/macp.200500304