Predicting corrosion for life estimation of ocean and coastal steel infrastructure
Physical infrastructure in coastal and offshore locations often is constructed from mild and low alloy steels. These are prone to marine corrosion even with the application of protective coatings and cathodic protection. Particularly for high‐value assets such as energy facilities (wind farms, oil a...
Gespeichert in:
Veröffentlicht in: | Materials and corrosion 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical infrastructure in coastal and offshore locations often is constructed from mild and low alloy steels. These are prone to marine corrosion even with the application of protective coatings and cathodic protection. Particularly for high‐value assets such as energy facilities (wind farms, oil and gas production and subsea pipelines), the prediction of their safe and economic life is of much interest. Herein, a review is given of the modern development of models for the prediction of long‐term marine corrosion of steel exposed to various marine environments. These include immersion, tidal, splash and atmospheric zones and contact with sands and soils. The effects of temperature and water pollution are especially important, as is the ability of the steels or irons to form protective corrosion products. Comments are made also about other alloys such as copper‐nickels and aluminium. All show that corrosion, including pitting corrosion, develops with increased exposure time in a bimodal manner. The reasons for such behaviour are considered, together with the practical implications, important for containment structures such as pipelines, tanks and floating offshore energy platforms. |
---|---|
ISSN: | 0947-5117 1521-4176 |
DOI: | 10.1002/maco.202314201 |