Influence of commercial DNA extraction kit choice on prokaryotic community metrics in marine sediment

Commercial DNA extraction kits are widely used for cultivation‐free surveys of marine sediment. However, the consequences of popular extraction‐kit choices for sequence‐based biological inferences about marine sedimentary communities have not previously been exhaustively assessed. To address this is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography, methods methods, 2018-09, Vol.16 (9), p.525-536
Hauptverfasser: Ramírez, Gustavo A., Graham, Dennis, D'Hondt, Steven
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Commercial DNA extraction kits are widely used for cultivation‐free surveys of marine sediment. However, the consequences of popular extraction‐kit choices for sequence‐based biological inferences about marine sedimentary communities have not previously been exhaustively assessed. To address this issue, we extracted DNA from multiple paired subsamples of marine sediment using two popular commercial extraction kits (MO BIO Laboratories PowerSoil® DNA isolation kit and MP Biomedicals FastDNATM Spin Kit for Soil). We report comparisons of (1) total DNA yield, (2) extract purity, (3) gene‐targeted quantification, and (4) post‐sequencing ecological inferences in near‐seafloor (< 1 meter below seafloor [mbsf]) and subsurface (> 1 mbsf) marine sediment. In near‐seafloor sediment, the MP Biomedicals FastDNATM Spin Kit for Soil exhibits higher extraction yields, higher 16S rRNA gene loads, higher taxonomic diversity, and lower contaminant loads. In subseafloor sediment, both kits yield similar values for all of these parameters. The MO BIO Laboratories PowerSoil® DNA isolation kit generally co‐extracts less protein with the DNA in both near‐seafloor and subseafloor sediment. For samples from all depths, both kits exhibit similar depth‐dependent community richness patterns, taxonomic composition, and ordination‐based similarity trends. We conclude that, despite kit‐specific differences in extract yields, purity and reagent contaminant loads, ecological inferences based on next‐generation sequencing of DNA extracted using these popular commercial kits are robustly comparable, particularly for subseafloor sediment samples.
ISSN:1541-5856
1541-5856
DOI:10.1002/lom3.10264