Kinetics of the reaction of OH radicals with a series of ethers under simulated atmospheric conditions at 295 K

Ethers are being increasingly used as motor fuel additives to increase the octane number and to reduce CO emissions. Since their reaction with hydroxyl radicals (OH) is a major loss process for these oxygenated species in the atmoshpere, we have conducted a relative rate study of the kinetics of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical kinetics 1989-11, Vol.21 (11), p.993-1001
Hauptverfasser: Wallington, Timothy J., Andino, Jean M., Skewes, Loretta M., Siegl, Walter O., Japar, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ethers are being increasingly used as motor fuel additives to increase the octane number and to reduce CO emissions. Since their reaction with hydroxyl radicals (OH) is a major loss process for these oxygenated species in the atmoshpere, we have conducted a relative rate study of the kinetics of the reactions of OH radicals with a series of ethers and report the results of these measurements here. Experiments were performed under simulated atmospheric conditions; atmospheric pressure (≃ 740 torr) in synthetic air at 295 K. Using rate constants of 2.53 × 10−12, and 1.35 × 10−11 cm3 molecule−1 s−1 for the reaction of OH radicals with n‐butane and diethyl ether, the following rate constants were derived, in units of 10−11 cm3 molecule−1 s−1: dimethylether, (0.232 ± 0.023); di‐n‐propylether, (1.97 ± 0.08); di‐n‐butylether, (2.74 ± 0.32); di‐n‐pentylether, (3.09 ± 0.26); methyl‐t‐butylether, (0.324 ± 0.008); methyl‐n‐butylether, (1.29 ± 0.03); ethyl‐n‐butylether, (2.27 ± 0.09); and ethyl‐t‐butylether, (0.883 ± 0.026). Quoted errors represent 2σ from the least squares analysis and do not include any systematic errors associated with uncertainties in the reference rate constants used to place our relative measurements on an absolute basis. The implications of these results for the atmospheric chemistry of ethers are discussed.
ISSN:0538-8066
1097-4601
DOI:10.1002/kin.550211103