Kinetics and mechanism of the oxidation of iron(II) ion by chlorine dioxide in aqueous solution
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step...
Gespeichert in:
Veröffentlicht in: | International journal of chemical kinetics 2004-10, Vol.36 (10), p.554-564 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is
The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by
At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol−1 s−1 and kc = (6 ± 1) × 104 L mol−1 s−1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10−2 L mol−1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH‡ and ΔS‡ are 64 ± 3 kJ mol−1 and + 40 ± 10 J K−1 mol−1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004 |
---|---|
ISSN: | 0538-8066 1097-4601 |
DOI: | 10.1002/kin.20023 |