Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two...
Gespeichert in:
Veröffentlicht in: | Journal of plant nutrition and soil science 2005-02, Vol.168 (1), p.130-137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1.
In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO$ _3^- $‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density.
Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘A |
---|---|
ISSN: | 1436-8730 1522-2624 |
DOI: | 10.1002/jpln.200421453 |