On the multi-colored Ramsey numbers of cycles

For a graph L and an integer k≥2, Rk(L) denotes the smallest integer N for which for any edge‐coloring of the complete graph KN by k colors there exists a color i for which the corresponding color class contains L as a subgraph. Bondy and Erdos conjectured that, for an odd cycle Cn on n vertices, Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2012-02, Vol.69 (2), p.169-175
Hauptverfasser: Łuczak, Tomasz, Simonovits, Miklós, Skokan, Jozef
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph L and an integer k≥2, Rk(L) denotes the smallest integer N for which for any edge‐coloring of the complete graph KN by k colors there exists a color i for which the corresponding color class contains L as a subgraph. Bondy and Erdos conjectured that, for an odd cycle Cn on n vertices, They proved the case when k = 2 and also provided an upper bound Rk(Cn)≤(k+ 2)!n. Recently, this conjecture has been verified for k = 3 if n is large. In this note, we prove that for every integer k≥4, When n is even, Sun Yongqi, Yang Yuansheng, Xu Feng, and Li Bingxi gave a construction, showing that Rk(Cn)≥(k−1)n−2k+ 4. Here we prove that if n is even, then © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 169‐175, 2012
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.20572