Cycles of even lengths modulo k
Thomassen [J Graph Theory 7 (1983), 261–271] conjectured that for all positive integers k and m, every graph of minimum degree at least k+1 contains a cycle of length congruent to 2m modulo k. We prove that this is true for k⩾2 if the minimum degree is at least 2k−1, which improves the previously kn...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2010-11, Vol.65 (3), p.246-252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thomassen [J Graph Theory 7 (1983), 261–271] conjectured that for all positive integers k and m, every graph of minimum degree at least k+1 contains a cycle of length congruent to 2m modulo k. We prove that this is true for k⩾2 if the minimum degree is at least 2k−1, which improves the previously known bound of 3k−2. We also show that Thomassen's conjecture is true for m = 2. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 246–252, 2010 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20477 |