On antimagic directed graphs

An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2010-07, Vol.64 (3), p.219-232
Hauptverfasser: Hefetz, Dan, Mütze, Torsten, Schwartz, Justus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 3
container_start_page 219
container_title Journal of graph theory
container_volume 64
creator Hefetz, Dan
Mütze, Torsten
Schwartz, Justus
description An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010
doi_str_mv 10.1002/jgt.20451
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT20451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqEwsDNkZXB7_o5HVEGgaqmQwsdmubZTUkqp7EjQf08gwMZ00um90z2ETgkMCQAdrZbtkAIXZA9lBLTCQEixjzJgkmMNlB-io5RW0K0FFBk6m29yu2mbV7tsXO6bGFwbfL6MdvucjtFBbdcpnPzMAbq_uqzG13g6L2_GF1PsGCiCraRCKx2IFpo4rXgtnHNc-oUMdRDeU8GdoFR74eqCgZAMdPBkIT0ozh0boPP-rotvKcVQm23sPoo7Q8B8ZZkuy3xndeyoZ9-bddj9D5pJWf0auDea1IaPP8PGFyMVU8I83pZmxidPd7MHbSr2CSFuXBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On antimagic directed graphs</title><source>Access via Wiley Online Library</source><creator>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</creator><creatorcontrib>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</creatorcontrib><description>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20451</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>antimagic ; labeling</subject><ispartof>Journal of graph theory, 2010-07, Vol.64 (3), p.219-232</ispartof><rights>2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</citedby><cites>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Hefetz, Dan</creatorcontrib><creatorcontrib>Mütze, Torsten</creatorcontrib><creatorcontrib>Schwartz, Justus</creatorcontrib><title>On antimagic directed graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</description><subject>antimagic</subject><subject>labeling</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqEwsDNkZXB7_o5HVEGgaqmQwsdmubZTUkqp7EjQf08gwMZ00um90z2ETgkMCQAdrZbtkAIXZA9lBLTCQEixjzJgkmMNlB-io5RW0K0FFBk6m29yu2mbV7tsXO6bGFwbfL6MdvucjtFBbdcpnPzMAbq_uqzG13g6L2_GF1PsGCiCraRCKx2IFpo4rXgtnHNc-oUMdRDeU8GdoFR74eqCgZAMdPBkIT0ozh0boPP-rotvKcVQm23sPoo7Q8B8ZZkuy3xndeyoZ9-bddj9D5pJWf0auDea1IaPP8PGFyMVU8I83pZmxidPd7MHbSr2CSFuXBs</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hefetz, Dan</creator><creator>Mütze, Torsten</creator><creator>Schwartz, Justus</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201007</creationdate><title>On antimagic directed graphs</title><author>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>antimagic</topic><topic>labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefetz, Dan</creatorcontrib><creatorcontrib>Mütze, Torsten</creatorcontrib><creatorcontrib>Schwartz, Justus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefetz, Dan</au><au>Mütze, Torsten</au><au>Schwartz, Justus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On antimagic directed graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2010-07</date><risdate>2010</risdate><volume>64</volume><issue>3</issue><spage>219</spage><epage>232</epage><pages>219-232</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20451</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2010-07, Vol.64 (3), p.219-232
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_20451
source Access via Wiley Online Library
subjects antimagic
labeling
title On antimagic directed graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20antimagic%20directed%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Hefetz,%20Dan&rft.date=2010-07&rft.volume=64&rft.issue=3&rft.spage=219&rft.epage=232&rft.pages=219-232&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20451&rft_dat=%3Cwiley_cross%3EJGT20451%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true