On antimagic directed graphs
An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagi...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2010-07, Vol.64 (3), p.219-232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 3 |
container_start_page | 219 |
container_title | Journal of graph theory |
container_volume | 64 |
creator | Hefetz, Dan Mütze, Torsten Schwartz, Justus |
description | An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010 |
doi_str_mv | 10.1002/jgt.20451 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT20451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqEwsDNkZXB7_o5HVEGgaqmQwsdmubZTUkqp7EjQf08gwMZ00um90z2ETgkMCQAdrZbtkAIXZA9lBLTCQEixjzJgkmMNlB-io5RW0K0FFBk6m29yu2mbV7tsXO6bGFwbfL6MdvucjtFBbdcpnPzMAbq_uqzG13g6L2_GF1PsGCiCraRCKx2IFpo4rXgtnHNc-oUMdRDeU8GdoFR74eqCgZAMdPBkIT0ozh0boPP-rotvKcVQm23sPoo7Q8B8ZZkuy3xndeyoZ9-bddj9D5pJWf0auDea1IaPP8PGFyMVU8I83pZmxidPd7MHbSr2CSFuXBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On antimagic directed graphs</title><source>Access via Wiley Online Library</source><creator>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</creator><creatorcontrib>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</creatorcontrib><description>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20451</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>antimagic ; labeling</subject><ispartof>Journal of graph theory, 2010-07, Vol.64 (3), p.219-232</ispartof><rights>2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</citedby><cites>FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Hefetz, Dan</creatorcontrib><creatorcontrib>Mütze, Torsten</creatorcontrib><creatorcontrib>Schwartz, Justus</creatorcontrib><title>On antimagic directed graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</description><subject>antimagic</subject><subject>labeling</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqEwsDNkZXB7_o5HVEGgaqmQwsdmubZTUkqp7EjQf08gwMZ00um90z2ETgkMCQAdrZbtkAIXZA9lBLTCQEixjzJgkmMNlB-io5RW0K0FFBk6m29yu2mbV7tsXO6bGFwbfL6MdvucjtFBbdcpnPzMAbq_uqzG13g6L2_GF1PsGCiCraRCKx2IFpo4rXgtnHNc-oUMdRDeU8GdoFR74eqCgZAMdPBkIT0ozh0boPP-rotvKcVQm23sPoo7Q8B8ZZkuy3xndeyoZ9-bddj9D5pJWf0auDea1IaPP8PGFyMVU8I83pZmxidPd7MHbSr2CSFuXBs</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hefetz, Dan</creator><creator>Mütze, Torsten</creator><creator>Schwartz, Justus</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201007</creationdate><title>On antimagic directed graphs</title><author>Hefetz, Dan ; Mütze, Torsten ; Schwartz, Justus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3071-a625979e19591c974f5ccc46db6efe5dd254c5229d5cf83056309ed1b6d0744c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>antimagic</topic><topic>labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hefetz, Dan</creatorcontrib><creatorcontrib>Mütze, Torsten</creatorcontrib><creatorcontrib>Schwartz, Justus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hefetz, Dan</au><au>Mütze, Torsten</au><au>Schwartz, Justus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On antimagic directed graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2010-07</date><risdate>2010</risdate><volume>64</volume><issue>3</issue><spage>219</spage><epage>232</epage><pages>219-232</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20451</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2010-07, Vol.64 (3), p.219-232 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jgt_20451 |
source | Access via Wiley Online Library |
subjects | antimagic labeling |
title | On antimagic directed graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20antimagic%20directed%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Hefetz,%20Dan&rft.date=2010-07&rft.volume=64&rft.issue=3&rft.spage=219&rft.epage=232&rft.pages=219-232&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20451&rft_dat=%3Cwiley_cross%3EJGT20451%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |