On antimagic directed graphs

An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2010-07, Vol.64 (3), p.219-232
Hauptverfasser: Hefetz, Dan, Mütze, Torsten, Schwartz, Justus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.20451