A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic
An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved t...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2009-12, Vol.62 (4), p.346-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 4 |
container_start_page | 346 |
container_title | Journal of graph theory |
container_volume | 62 |
creator | Meng, Wei Li, Shengjia Guo, Yubao Xu, Gaokui |
description | An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved the result of Thomassen and confirmed that every strong tournament contains a vertex whose out‐arcs are pancyclic. In this article, we extend the result of Yao et al. to local tournaments and obtain a best possible result in some sense. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 346–361, 2009 |
doi_str_mv | 10.1002/jgt.20410 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_7SLNGDMC_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3070-349a664bbf790e23925a49c071e37e8499574b2eb609660729fa293b417418b13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqUw8A-8Mrh9_kgcj1WBACploIjRcozTpqRxZact_fcECmxMT7o650rvInRJYUAB2HA5bwcMBIUj1KOgJAFKs2PUA54KooCJU3QW4xK6OIGsh6YjXHtratz6TWjMyjUttr5pTdVEbPDWhdZ94N3CR4f9piUm2C4PDq-j27x5Mq9CuyBr09i9rSt7jk5KU0d38XP76OX2Zja-I5On_H48mhDLQQLhQpk0FUVRSgWOccUSI5QFSR2XLhNKJVIUzBUpqDQFyVRpmOKFoFLQrKC8j64OvTb4GIMr9TpUKxP2moL-GkJ3Q-jvITp2eGB3Ve32_4P6IZ_9GuRgVLH7_s8w4V2nkstEv05zLZ8n0_z6cawz_gl8V22F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meng, Wei ; Li, Shengjia ; Guo, Yubao ; Xu, Gaokui</creator><creatorcontrib>Meng, Wei ; Li, Shengjia ; Guo, Yubao ; Xu, Gaokui</creatorcontrib><description>An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved the result of Thomassen and confirmed that every strong tournament contains a vertex whose out‐arcs are pancyclic. In this article, we extend the result of Yao et al. to local tournaments and obtain a best possible result in some sense. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 346–361, 2009</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20410</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>local tournament ; pancyclicity ; round-decomposable</subject><ispartof>Journal of graph theory, 2009-12, Vol.62 (4), p.346-361</ispartof><rights>2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3070-349a664bbf790e23925a49c071e37e8499574b2eb609660729fa293b417418b13</citedby><cites>FETCH-LOGICAL-c3070-349a664bbf790e23925a49c071e37e8499574b2eb609660729fa293b417418b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Li, Shengjia</creatorcontrib><creatorcontrib>Guo, Yubao</creatorcontrib><creatorcontrib>Xu, Gaokui</creatorcontrib><title>A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved the result of Thomassen and confirmed that every strong tournament contains a vertex whose out‐arcs are pancyclic. In this article, we extend the result of Yao et al. to local tournaments and obtain a best possible result in some sense. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 346–361, 2009</description><subject>local tournament</subject><subject>pancyclicity</subject><subject>round-decomposable</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqUw8A-8Mrh9_kgcj1WBACploIjRcozTpqRxZact_fcECmxMT7o650rvInRJYUAB2HA5bwcMBIUj1KOgJAFKs2PUA54KooCJU3QW4xK6OIGsh6YjXHtratz6TWjMyjUttr5pTdVEbPDWhdZ94N3CR4f9piUm2C4PDq-j27x5Mq9CuyBr09i9rSt7jk5KU0d38XP76OX2Zja-I5On_H48mhDLQQLhQpk0FUVRSgWOccUSI5QFSR2XLhNKJVIUzBUpqDQFyVRpmOKFoFLQrKC8j64OvTb4GIMr9TpUKxP2moL-GkJ3Q-jvITp2eGB3Ve32_4P6IZ_9GuRgVLH7_s8w4V2nkstEv05zLZ8n0_z6cawz_gl8V22F</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Meng, Wei</creator><creator>Li, Shengjia</creator><creator>Guo, Yubao</creator><creator>Xu, Gaokui</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200912</creationdate><title>A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic</title><author>Meng, Wei ; Li, Shengjia ; Guo, Yubao ; Xu, Gaokui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3070-349a664bbf790e23925a49c071e37e8499574b2eb609660729fa293b417418b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>local tournament</topic><topic>pancyclicity</topic><topic>round-decomposable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Li, Shengjia</creatorcontrib><creatorcontrib>Guo, Yubao</creatorcontrib><creatorcontrib>Xu, Gaokui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Wei</au><au>Li, Shengjia</au><au>Guo, Yubao</au><au>Xu, Gaokui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2009-12</date><risdate>2009</risdate><volume>62</volume><issue>4</issue><spage>346</spage><epage>361</epage><pages>346-361</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved the result of Thomassen and confirmed that every strong tournament contains a vertex whose out‐arcs are pancyclic. In this article, we extend the result of Yao et al. to local tournaments and obtain a best possible result in some sense. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 346–361, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20410</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2009-12, Vol.62 (4), p.346-361 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jgt_20410 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | local tournament pancyclicity round-decomposable |
title | A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20local%20tournament%20contains%20a%20vertex%20whose%20out-arcs%20are%20pseudo-girth-pancyclic&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Meng,%20Wei&rft.date=2009-12&rft.volume=62&rft.issue=4&rft.spage=346&rft.epage=361&rft.pages=346-361&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20410&rft_dat=%3Cistex_cross%3Eark_67375_WNG_7SLNGDMC_8%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |