A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic
An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved t...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2009-12, Vol.62 (4), p.346-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An arc leaving a vertex x in a digraph is called an out‐arc of x. Thomassen (J Combin Theory Ser B 28 (1980), 142–163) proved that every strong tournament contains a vertex whose every out‐arc is contained in a Hamiltonian cycle. In 2000, Yao et al. (Discrete Appl Math 99 (2000), 245–249) improved the result of Thomassen and confirmed that every strong tournament contains a vertex whose out‐arcs are pancyclic. In this article, we extend the result of Yao et al. to local tournaments and obtain a best possible result in some sense. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 346–361, 2009 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20410 |