On the number of (r,r+1)- factors in an (r,r+1)-factorization of a simple graph
For integers d≥0, s≥0, a (d, d+s)‐graph is a graph in which the degrees of all the vertices lie in the set {d, d+1, …, d+s}. For an integer r≥0, an (r, r+1)‐factor of a graph G is a spanning (r, r+1)‐subgraph of G. An (r, r+1)‐factorization of a graph G is the expression of G as the edge‐disjoint un...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2009-04, Vol.60 (4), p.257-268 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For integers d≥0, s≥0, a (d, d+s)‐graph is a graph in which the degrees of all the vertices lie in the set {d, d+1, …, d+s}. For an integer r≥0, an (r, r+1)‐factor of a graph G is a spanning (r, r+1)‐subgraph of G. An (r, r+1)‐factorization of a graph G is the expression of G as the edge‐disjoint union of (r, r+1)‐factors. For integers r, s≥0, t≥1, let f(r, s, t) be the smallest integer such that, for each integer d≥f(r, s, t), each simple (d, d+s) ‐graph has an (r, r+1) ‐factorization with x (r, r+1) ‐factors for at least t different values of x. In this note we evaluate f(r, s, t). © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 257‐268, 2009 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20356 |