Disjoint cycles with chords in graphs

Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2009-02, Vol.60 (2), p.87-98
Hauptverfasser: Babu, Ch. Sobhan, Diwan, Ajit A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 2
container_start_page 87
container_title Journal of graph theory
container_volume 60
creator Babu, Ch. Sobhan
Diwan, Ajit A.
description Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009
doi_str_mv 10.1002/jgt.20349
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_CCW2HL2H_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3079-c05594f9f72f5bfc55f5e1724f20db1dc49a490595049479dd8036a785e353383</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqEw8A-yMDC4PX_V8YgCTUAVLEUdrdSxW4fQVHak0n9PoMDGdNLpvdM9hK4JjAkAnTTrfkyBcXWCEgJKYiAkO0UJsCnHCig_RxcxNjCsBWQJurn3sen8tk_NwbQ2pnvfb1Kz6UIdU79N16HabeIlOnNVG-3Vzxyh19nDIi_x_KV4zO_m2DCQChsQQnGnnKROrJwRwglLJOWOQr0iteGq4gqEEsAVl6qus-GvSmbCMsFYxkbo9njXhC7GYJ3eBf9ehYMmoL_69NCnv_sGdnJk9761h_9B_VQsfg18NHzs7cefUYU3PZVMCr18LnSeL2k5p6Vm7BPxcl6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Disjoint cycles with chords in graphs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Babu, Ch. Sobhan ; Diwan, Ajit A.</creator><creatorcontrib>Babu, Ch. Sobhan ; Diwan, Ajit A.</creatorcontrib><description>Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20349</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>cycles with chords ; degree conditions ; forests</subject><ispartof>Journal of graph theory, 2009-02, Vol.60 (2), p.87-98</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3079-c05594f9f72f5bfc55f5e1724f20db1dc49a490595049479dd8036a785e353383</citedby><cites>FETCH-LOGICAL-c3079-c05594f9f72f5bfc55f5e1724f20db1dc49a490595049479dd8036a785e353383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20349$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20349$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Babu, Ch. Sobhan</creatorcontrib><creatorcontrib>Diwan, Ajit A.</creatorcontrib><title>Disjoint cycles with chords in graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009</description><subject>cycles with chords</subject><subject>degree conditions</subject><subject>forests</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqEw8A-yMDC4PX_V8YgCTUAVLEUdrdSxW4fQVHak0n9PoMDGdNLpvdM9hK4JjAkAnTTrfkyBcXWCEgJKYiAkO0UJsCnHCig_RxcxNjCsBWQJurn3sen8tk_NwbQ2pnvfb1Kz6UIdU79N16HabeIlOnNVG-3Vzxyh19nDIi_x_KV4zO_m2DCQChsQQnGnnKROrJwRwglLJOWOQr0iteGq4gqEEsAVl6qus-GvSmbCMsFYxkbo9njXhC7GYJ3eBf9ehYMmoL_69NCnv_sGdnJk9761h_9B_VQsfg18NHzs7cefUYU3PZVMCr18LnSeL2k5p6Vm7BPxcl6k</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Babu, Ch. Sobhan</creator><creator>Diwan, Ajit A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200902</creationdate><title>Disjoint cycles with chords in graphs</title><author>Babu, Ch. Sobhan ; Diwan, Ajit A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3079-c05594f9f72f5bfc55f5e1724f20db1dc49a490595049479dd8036a785e353383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>cycles with chords</topic><topic>degree conditions</topic><topic>forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, Ch. Sobhan</creatorcontrib><creatorcontrib>Diwan, Ajit A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, Ch. Sobhan</au><au>Diwan, Ajit A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disjoint cycles with chords in graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2009-02</date><risdate>2009</risdate><volume>60</volume><issue>2</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20349</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2009-02, Vol.60 (2), p.87-98
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_20349
source Wiley Online Library Journals Frontfile Complete
subjects cycles with chords
degree conditions
forests
title Disjoint cycles with chords in graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disjoint%20cycles%20with%20chords%20in%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Babu,%20Ch.%20Sobhan&rft.date=2009-02&rft.volume=60&rft.issue=2&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20349&rft_dat=%3Cistex_cross%3Eark_67375_WNG_CCW2HL2H_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true