Disjoint cycles with chords in graphs

Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2009-02, Vol.60 (2), p.87-98
Hauptverfasser: Babu, Ch. Sobhan, Diwan, Ajit A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.20349