Disjoint cycles with chords in graphs
Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$,...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2009-02, Vol.60 (2), p.87-98 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $n_1,n_2,\ldots,n_k$ be integers, $n=\sum n_i$, $n_i\ge 3$, and let for each $1\le i\le k$, $H_i$ be a cycle or a tree on $n_i$ vertices. We prove that every graph G of order at least n with $\sigma_2(G) \ge 2( n-k) -1$ contains k vertex disjoint subgraphs $H_1',H_2',\ldots,H_k'$, where $H_i'=H_i$, if $H_i$ is a tree, and $H_i'$ is a cycle with $n_i-3$ chords incident with a common vertex, if $H_i$ is a cycle. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 87–98, 2009 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20349 |