Extremal results for rooted minor problems
In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6,...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2007-07, Vol.55 (3), p.191-207 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6, 7. This is the so called “rooted K3, 4‐minor problem.” There are only few known results on rooted minor problems, for example, [15,6]. In this article, we prove that a 4‐connected graph with n vertices and at least 5n − 14 edges has a rooted K3,4‐minor. In the proof we use a lemma on graphs with 9 vertices, proved by computer search. We also consider the similar problems concerning rooted K3,3‐minor problem, and rooted K3,2‐minor problem. More precisely, the first theorem says that if G is 3‐connected and e(G) ≥ 4|G| − 9 then G has a rooted K3,3‐minor, and the second theorem says that if G is 2‐connected and e(G) ≥ 13/5|G| − 17/5 then G has a rooted K3,2‐minor. In the second case, the extremal function for the number of edges is best possible. These results are then used in the proof of our forthcoming articles 7, 8. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 191–207, 2007 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20232 |