Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation
BACKGROUND: Butanol fermentation is product limiting owing to butanol toxicity to microbial cells. Butanol (boiling point: 118 °C) boils at a higher temperature than water (boiling point: 100 °C) and application of vacuum technology to integrated acetone–butanol–ethanol (ABE) fermentation and recove...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2012-03, Vol.87 (3), p.334-340 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND: Butanol fermentation is product limiting owing to butanol toxicity to microbial cells. Butanol (boiling point: 118 °C) boils at a higher temperature than water (boiling point: 100 °C) and application of vacuum technology to integrated acetone–butanol–ethanol (ABE) fermentation and recovery may have been ignored because of direct comparison of boiling points of water and butanol. This research investigated simultaneous ABE fermentation using Clostridium beijerinckii 8052 and in situ butanol recovery by vacuum. To facilitate ABE mass transfer and recovery at fermentation temperature, batch fermentation was conducted in triplicate at 35 °C in a 14 L bioreactor connected in series with a condensation system and vacuum pump.
RESULTS: Concentration of ABE in the recovered stream was greater than that in the fermentation broth (from 15.7 g L−1 up to 33 g L−1). Integration of the vacuum with the bioreactor resulted in enhanced ABE productivity by 100% and complete utilization of glucose as opposed to a significant amount of residual glucose in the control batch fermentation.
CONCLUSION: This research demonstrated that vacuum fermentation technology can be used for in situ butanol recovery during ABE fermentation and that C. beijerinckii 8052 can tolerate vacuum conditions, with no negative effect on cell growth and ABE production. Copyright © 2011 Society of Chemical Industry |
---|---|
ISSN: | 0268-2575 1097-4660 |
DOI: | 10.1002/jctb.2717 |