Correlating gas-liquid co-current flow hydrodynamics in packed beds using the F-function concept
A phenomenological model based on the generalization of the single‐phase Forchheimer equation was recently proposed for predicting pressure drop and phase saturations in gas–liquid co‐current horizontal and downward high‐pressure packed beds. Here, we extend the model to packed‐bubble (co‐current up...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2005-01, Vol.80 (1), p.107-112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A phenomenological model based on the generalization of the single‐phase Forchheimer equation was recently proposed for predicting pressure drop and phase saturations in gas–liquid co‐current horizontal and downward high‐pressure packed beds. Here, we extend the model to packed‐bubble (co‐current upflow) and trickle‐bed operation using phase saturation power laws similar to Corey relative permeabilities. The power‐law exponents were fitted using a wide pressure gradient and liquid saturation databank in co‐current up/downward packed‐bed flows. It was found that this approach, as well as other in the literature developed for down‐flow reactors apply also to upward flows; the prediction accuracy was comparable for both flow directions to existing literature approaches. Copyright © 2004 Society of Chemical Industry |
---|---|
ISSN: | 0268-2575 1097-4660 |
DOI: | 10.1002/jctb.1147 |