Castration-induced prostate epithelial cell apoptosis results from targeted oxidative stress attack of M1 142 -macrophages
Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern i...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2019-10, Vol.234 (10), p.19048-19058 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern in intraepithelial CD68-positive macrophages, with the on-phase at Day 3 after castration. Rats treated with gadolinium chloride to deplete macrophages showed a significant drop in apoptosis, suggesting a causal relationship between macrophages and epithelial cell apoptosis. Intraepithelial M1-polarization was also limited to Day 3, and the inducible nitric oxide synthase (iNOS) knockout mice showed significantly less apoptosis than wild-type controls. The epithelial cells showed focal DNA double-strand breaks (DSB), 8-oxoguanine, and protein tyrosine-nitrosylation, fingerprints of exposure to peroxinitrite. Cultured epithelial cells induced M1-polarization and showed focal DSB and underwent apoptosis. The same phenomena were reproduced in LNCaP cells cocultured with Raw 264.7 macrophages. In conclusion, the M1
-macrophage (named after Znf142) attack causes activation of the intrinsic apoptosis pathway in epithelial cells after castration. |
---|---|
ISSN: | 0021-9541 1097-4652 |
DOI: | 10.1002/jcp.28544 |