Symmetric latin square and complete graph analogues of the evans conjecture
With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 1994, Vol.2 (4), p.197-252 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 4 |
container_start_page | 197 |
container_title | Journal of combinatorial designs |
container_volume | 2 |
creator | Andersen, Lars Døvling Hilton, A. J. W. |
description | With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with an admissible diagonal and at most n − 1 nonempty cells can be completed to a symmetric latin square of side n. We also characterize those partial symmetric latin squares of side n with exactly n or n + 1 nonempty cells which cannot be completed. From these results we deduce theorems about completing edge‐colorings of complete graphs K2m and K2m − 1 with 2m − 1 colors, with m + 1 or fewer edges getting prescribed colors. © 1994 John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/jcd.3180020404 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcd_3180020404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_2R3N4MLM_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2424-1c732f025f7c571f2db366bf8740e29e6ddb003828052d88f2ca59b38fbac7f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZe0fSBnbieMsUXnTFgkqsbQcZ9ym5FHsFOjfE1QEYsVqrkb33MUh5JTBiAHws5UtRoKpPkIM8R4ZsIRDJCWD_T6DFJFKRHZIjkJYAUCWCTkg90_busbOl5ZWpisbGl43xiM1TUFtW68r7JAuvFkv-5ep2sUGA20d7ZZI8c00oW81K7TdxuMxOXCmCnjyfYdkfnU5H99Ek4fr2_H5JLI85nHEbCq4A5641CYpc7zIhZS5U2kMyDOURZEDCMUVJLxQynFrkiwXyuXGpk4MyWg3a30bgken176sjd9qBvrLhO5N6F8TPZDtgPeywu0_bX03vvjDRju2DB1-_LDGv2iZijTRz7NrzR_FLJ5OpnoqPgFAe3GI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetric latin square and complete graph analogues of the evans conjecture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Andersen, Lars Døvling ; Hilton, A. J. W.</creator><creatorcontrib>Andersen, Lars Døvling ; Hilton, A. J. W.</creatorcontrib><description>With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with an admissible diagonal and at most n − 1 nonempty cells can be completed to a symmetric latin square of side n. We also characterize those partial symmetric latin squares of side n with exactly n or n + 1 nonempty cells which cannot be completed. From these results we deduce theorems about completing edge‐colorings of complete graphs K2m and K2m − 1 with 2m − 1 colors, with m + 1 or fewer edges getting prescribed colors. © 1994 John Wiley & Sons, Inc.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.3180020404</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>Journal of combinatorial designs, 1994, Vol.2 (4), p.197-252</ispartof><rights>Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2424-1c732f025f7c571f2db366bf8740e29e6ddb003828052d88f2ca59b38fbac7f3</citedby><cites>FETCH-LOGICAL-c2424-1c732f025f7c571f2db366bf8740e29e6ddb003828052d88f2ca59b38fbac7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.3180020404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.3180020404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Andersen, Lars Døvling</creatorcontrib><creatorcontrib>Hilton, A. J. W.</creatorcontrib><title>Symmetric latin square and complete graph analogues of the evans conjecture</title><title>Journal of combinatorial designs</title><addtitle>J. Combin. Designs</addtitle><description>With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with an admissible diagonal and at most n − 1 nonempty cells can be completed to a symmetric latin square of side n. We also characterize those partial symmetric latin squares of side n with exactly n or n + 1 nonempty cells which cannot be completed. From these results we deduce theorems about completing edge‐colorings of complete graphs K2m and K2m − 1 with 2m − 1 colors, with m + 1 or fewer edges getting prescribed colors. © 1994 John Wiley & Sons, Inc.</description><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZe0fSBnbieMsUXnTFgkqsbQcZ9ym5FHsFOjfE1QEYsVqrkb33MUh5JTBiAHws5UtRoKpPkIM8R4ZsIRDJCWD_T6DFJFKRHZIjkJYAUCWCTkg90_busbOl5ZWpisbGl43xiM1TUFtW68r7JAuvFkv-5ep2sUGA20d7ZZI8c00oW81K7TdxuMxOXCmCnjyfYdkfnU5H99Ek4fr2_H5JLI85nHEbCq4A5641CYpc7zIhZS5U2kMyDOURZEDCMUVJLxQynFrkiwXyuXGpk4MyWg3a30bgken176sjd9qBvrLhO5N6F8TPZDtgPeywu0_bX03vvjDRju2DB1-_LDGv2iZijTRz7NrzR_FLJ5OpnoqPgFAe3GI</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Andersen, Lars Døvling</creator><creator>Hilton, A. J. W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1994</creationdate><title>Symmetric latin square and complete graph analogues of the evans conjecture</title><author>Andersen, Lars Døvling ; Hilton, A. J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2424-1c732f025f7c571f2db366bf8740e29e6ddb003828052d88f2ca59b38fbac7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, Lars Døvling</creatorcontrib><creatorcontrib>Hilton, A. J. W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, Lars Døvling</au><au>Hilton, A. J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric latin square and complete graph analogues of the evans conjecture</atitle><jtitle>Journal of combinatorial designs</jtitle><addtitle>J. Combin. Designs</addtitle><date>1994</date><risdate>1994</risdate><volume>2</volume><issue>4</issue><spage>197</spage><epage>252</epage><pages>197-252</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with an admissible diagonal and at most n − 1 nonempty cells can be completed to a symmetric latin square of side n. We also characterize those partial symmetric latin squares of side n with exactly n or n + 1 nonempty cells which cannot be completed. From these results we deduce theorems about completing edge‐colorings of complete graphs K2m and K2m − 1 with 2m − 1 colors, with m + 1 or fewer edges getting prescribed colors. © 1994 John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jcd.3180020404</doi><tpages>56</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8539 |
ispartof | Journal of combinatorial designs, 1994, Vol.2 (4), p.197-252 |
issn | 1063-8539 1520-6610 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jcd_3180020404 |
source | Wiley Online Library Journals Frontfile Complete |
title | Symmetric latin square and complete graph analogues of the evans conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20latin%20square%20and%20complete%20graph%20analogues%20of%20the%20evans%20conjecture&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Andersen,%20Lars%20D%C3%B8vling&rft.date=1994&rft.volume=2&rft.issue=4&rft.spage=197&rft.epage=252&rft.pages=197-252&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.3180020404&rft_dat=%3Cistex_cross%3Eark_67375_WNG_2R3N4MLM_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |