Symmetric latin square and complete graph analogues of the evans conjecture

With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 1994, Vol.2 (4), p.197-252
Hauptverfasser: Andersen, Lars Døvling, Hilton, A. J. W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the proof of the Evans conjecture, it was established that any partial latin square of side n with a most n − 1 nonempty cells can be completed to a latin square of side n. In this article we prove an analogous result for symmetric latin squares: a partial symmetric latin square of side n with an admissible diagonal and at most n − 1 nonempty cells can be completed to a symmetric latin square of side n. We also characterize those partial symmetric latin squares of side n with exactly n or n + 1 nonempty cells which cannot be completed. From these results we deduce theorems about completing edge‐colorings of complete graphs K2m and K2m − 1 with 2m − 1 colors, with m + 1 or fewer edges getting prescribed colors. © 1994 John Wiley & Sons, Inc.
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.3180020404