Decomposition of complete graphs into 5-cubes
Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2006-03, Vol.14 (2), p.159-166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 2 |
container_start_page | 159 |
container_title | Journal of combinatorial designs |
container_volume | 14 |
creator | Bryant, D. El-Zanati, S. I. Maenhaut, B. Vanden Eynden, C. |
description | Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending further weight to a long‐standing conjecture of Kotzig. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 159–166, 2006 |
doi_str_mv | 10.1002/jcd.20066 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcd_20066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCD20066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3076-bf9237b24848c3506dc2f4853275fdaeb2d768b605306d920b5313dfc202dc9a3</originalsourceid><addsrcrecordid>eNp1j81OwzAQhC0EEqVw4A1y5eB2bcd2ckQptEAFQvwdLcexwSVtKjsV9O1JCXDjtLva-XZ2EDolMCIAdLww1YgCCLGHBoRTwEIQ2O96EAxnnOWH6CjGBQDkORMDhCfWNMt1E33rm1XSuGQ31ra1yWvQ67eY-FXbJBybTWnjMTpwuo725KcO0dPlxWMxw_O76VVxPseGgRS4dDllsqRplmaGcRCVoS7t3KnkrtK2pJUUWSmAs26XUyg5I6xyhgKtTK7ZEJ31d01oYgzWqXXwSx22ioDa5VRdTvWds9OOe-2Hr-32f6G6Lia_BO4JH1v7-Ufo8K6EZJKrl9upep493HT_36uUfQGXImGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decomposition of complete graphs into 5-cubes</title><source>Access via Wiley Online Library</source><creator>Bryant, D. ; El-Zanati, S. I. ; Maenhaut, B. ; Vanden Eynden, C.</creator><creatorcontrib>Bryant, D. ; El-Zanati, S. I. ; Maenhaut, B. ; Vanden Eynden, C.</creatorcontrib><description>Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending further weight to a long‐standing conjecture of Kotzig. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 159–166, 2006</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.20066</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>cube decomposition ; Kotzig Conjecture</subject><ispartof>Journal of combinatorial designs, 2006-03, Vol.14 (2), p.159-166</ispartof><rights>Copyright © 2005 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3076-bf9237b24848c3506dc2f4853275fdaeb2d768b605306d920b5313dfc202dc9a3</citedby><cites>FETCH-LOGICAL-c3076-bf9237b24848c3506dc2f4853275fdaeb2d768b605306d920b5313dfc202dc9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.20066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.20066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bryant, D.</creatorcontrib><creatorcontrib>El-Zanati, S. I.</creatorcontrib><creatorcontrib>Maenhaut, B.</creatorcontrib><creatorcontrib>Vanden Eynden, C.</creatorcontrib><title>Decomposition of complete graphs into 5-cubes</title><title>Journal of combinatorial designs</title><addtitle>J. Combin. Designs</addtitle><description>Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending further weight to a long‐standing conjecture of Kotzig. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 159–166, 2006</description><subject>cube decomposition</subject><subject>Kotzig Conjecture</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1j81OwzAQhC0EEqVw4A1y5eB2bcd2ckQptEAFQvwdLcexwSVtKjsV9O1JCXDjtLva-XZ2EDolMCIAdLww1YgCCLGHBoRTwEIQ2O96EAxnnOWH6CjGBQDkORMDhCfWNMt1E33rm1XSuGQ31ra1yWvQ67eY-FXbJBybTWnjMTpwuo725KcO0dPlxWMxw_O76VVxPseGgRS4dDllsqRplmaGcRCVoS7t3KnkrtK2pJUUWSmAs26XUyg5I6xyhgKtTK7ZEJ31d01oYgzWqXXwSx22ioDa5VRdTvWds9OOe-2Hr-32f6G6Lia_BO4JH1v7-Ufo8K6EZJKrl9upep493HT_36uUfQGXImGs</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Bryant, D.</creator><creator>El-Zanati, S. I.</creator><creator>Maenhaut, B.</creator><creator>Vanden Eynden, C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Decomposition of complete graphs into 5-cubes</title><author>Bryant, D. ; El-Zanati, S. I. ; Maenhaut, B. ; Vanden Eynden, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3076-bf9237b24848c3506dc2f4853275fdaeb2d768b605306d920b5313dfc202dc9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>cube decomposition</topic><topic>Kotzig Conjecture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryant, D.</creatorcontrib><creatorcontrib>El-Zanati, S. I.</creatorcontrib><creatorcontrib>Maenhaut, B.</creatorcontrib><creatorcontrib>Vanden Eynden, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryant, D.</au><au>El-Zanati, S. I.</au><au>Maenhaut, B.</au><au>Vanden Eynden, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of complete graphs into 5-cubes</atitle><jtitle>Journal of combinatorial designs</jtitle><addtitle>J. Combin. Designs</addtitle><date>2006-03</date><risdate>2006</risdate><volume>14</volume><issue>2</issue><spage>159</spage><epage>166</epage><pages>159-166</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending further weight to a long‐standing conjecture of Kotzig. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 159–166, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jcd.20066</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8539 |
ispartof | Journal of combinatorial designs, 2006-03, Vol.14 (2), p.159-166 |
issn | 1063-8539 1520-6610 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jcd_20066 |
source | Access via Wiley Online Library |
subjects | cube decomposition Kotzig Conjecture |
title | Decomposition of complete graphs into 5-cubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20complete%20graphs%20into%205-cubes&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Bryant,%20D.&rft.date=2006-03&rft.volume=14&rft.issue=2&rft.spage=159&rft.epage=166&rft.pages=159-166&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.20066&rft_dat=%3Cwiley_cross%3EJCD20066%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |