Decomposition of complete graphs into 5-cubes
Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2006-03, Vol.14 (2), p.159-166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Necessary conditions for the complete graph on n vertices to have a decomposition into 5‐cubes are that 5 divides n − 1 and 80 divides n(n − 1)/2. These are known to be sufficient when n is odd. We prove them also sufficient for n even, thus completing the spectrum problem for the 5‐cube and lending further weight to a long‐standing conjecture of Kotzig. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 159–166, 2006 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.20066 |