Blocking sets of nonsecant lines to a conic in PG(2,q), q odd
In a previous paper 1, all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic ${\cal C}$, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to ${\...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2005-07, Vol.13 (4), p.292-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous paper 1, all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic ${\cal C}$, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to ${\cal C}$. © 2004 Wiley Periodicals, Inc. |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.20042 |