The smallest minimal blocking sets of Q(6, q), q even
We characterize the smallest minimal blocking sets of Q(6,q), q even and q ≥ 32. We obtain this result using projection arguments which translate the problem into problems concerning blocking sets of Q(4,q). Then using results on the size of the smallest minimal blocking sets of Q(4,q), q even, of E...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2003, Vol.11 (4), p.290-303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the smallest minimal blocking sets of Q(6,q), q even and q ≥ 32. We obtain this result using projection arguments which translate the problem into problems concerning blocking sets of Q(4,q). Then using results on the size of the smallest minimal blocking sets of Q(4,q), q even, of Eisfeld et al. (2001) Discrete Math 238(1–3): 35–51, and results concerning the number of internal nuclei of (q + 2)‐sets in PG(2,q), q even, of Bichara and Korchmáros [1982; Note on], we obtain the characterization. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 290–303, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jcd.10048 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.10048 |