The smallest minimal blocking sets of Q(6, q), q even

We characterize the smallest minimal blocking sets of Q(6,q), q even and q ≥ 32. We obtain this result using projection arguments which translate the problem into problems concerning blocking sets of Q(4,q). Then using results on the size of the smallest minimal blocking sets of Q(4,q), q even, of E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2003, Vol.11 (4), p.290-303
Hauptverfasser: De Beule, J., Storme, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the smallest minimal blocking sets of Q(6,q), q even and q ≥ 32. We obtain this result using projection arguments which translate the problem into problems concerning blocking sets of Q(4,q). Then using results on the size of the smallest minimal blocking sets of Q(4,q), q even, of Eisfeld et al. (2001) Discrete Math 238(1–3): 35–51, and results concerning the number of internal nuclei of (q + 2)‐sets in PG(2,q), q even, of Bichara and Korchmáros [1982; Note on], we obtain the characterization. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 290–303, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jcd.10048
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.10048