Lotto design tables
An LD(n,k,p,t;b) lotto design is a set of b k‐sets (blocks) of an n‐set such that any p‐set intersects at least one k‐set in t or more elements. Let L(n,k,p,t) denote the minimum number of blocks in any LD(n,k,p,t;b) lotto design. We will list the known lower and upper bound theorems for lotto desig...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2002, Vol.10 (5), p.335-359 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An LD(n,k,p,t;b) lotto design is a set of b k‐sets (blocks) of an n‐set such that any p‐set intersects at least one k‐set in t or more elements. Let L(n,k,p,t) denote the minimum number of blocks in any LD(n,k,p,t;b) lotto design. We will list the known lower and upper bound theorems for lotto designs. Since many of these bounds are recursive, we will incorporate this information in a set of tables for lower and upper bounds for lotto designs with small parameters. We will also use back‐track algorithms, greedy algorithms, and simulated annealing to improve the tables. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 335–359, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jcd.10020 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.10020 |