Poling: Promoting conformational variation
This article introduces several methods of assessing the extent to which a collection of conformations represents or covers conformational space. It also describes poling: a novel technique for promoting conformational variation that can be applied to any method of conformational analysis that local...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 1995-02, Vol.16 (2), p.171-187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article introduces several methods of assessing the extent to which a collection of conformations represents or covers conformational space. It also describes poling: a novel technique for promoting conformational variation that can be applied to any method of conformational analysis that locally minimizes a penalty or energy function. The function being minimized is modified to force similar conformers away from each other. The method is independent of the origin of the initial conformers and of the particular minimization method used. It is found that, with the modification of the penalty function, clustering of the resulting conformers is generally unnecessary because the conformers are forced to be dissimilar. The functional form of the poling function is presented, and the merits are discussed with reference to (1) efficacy at promoting variation and (2) perturbation of the unmodified function. Results will be presented using conformers obtained from distance geometry with and without poling. It will be shown that the addition of poling eliminates much redundancy in conformer generation and improves the coverage of the conformational space. © 1995 by John Wiley & Sons, Inc. |
---|---|
ISSN: | 0192-8651 1096-987X |
DOI: | 10.1002/jcc.540160205 |