Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205

Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Comput. Chem.; (United States) 1987-07, Vol.8 (5), p.636-644
Hauptverfasser: Bauschlicher Jr, Charles W., Partridge, Harry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.540080508