Intramolecular interactions and intramolecular hydrogen bonding in conformers of gaseous glycine
Ab initio calculations at the MP2/6‐311++G** level of theory led recently to the identification of 13 stable conformers of gaseous glycine with relative energies within 11 kcal/mol. The stability of every structure depends on subtle intramolecular effects arising from conformational changes. These i...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2001-05, Vol.22 (7), p.702-716 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ab initio calculations at the MP2/6‐311++G** level of theory led recently to the identification of 13 stable conformers of gaseous glycine with relative energies within 11 kcal/mol. The stability of every structure depends on subtle intramolecular effects arising from conformational changes. These intramolecular interactions are examined with the tools provided by the Atoms In Molecules (AIM) theory, which allows obtaining a wealth of quantum mechanics information from the molecular electron density ρ(r). The analysis of the topological features of ρ(r) on one side and the atomic properties integrated in the basins defined by the gradient vector field of the density on the other side makes possible to explore the different intramolecular effects in every conformer. The existence of intramolecular hydrogen bonds on some conformers is demonstrated, while the presence of other stabilizing interactions arising from favorable conformations is shown to explain the stability of other structures in the potential energy surface of glycine. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 702–716, 2001 |
---|---|
ISSN: | 0192-8651 1096-987X |
DOI: | 10.1002/jcc.1038 |