Glucosamine inhibits IL-1β-mediated IL-8 production in prostate cancer cells by MAPK attenuation

Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2009-10, Vol.108 (2), p.489-498
Hauptverfasser: Tsai, Cheng-Yen, Lee, Tzong-Shyuan, Kou, Yu Ru, Wu, Yuh-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.22278