Characterization of aTiO 2 surfaces functionalized with CAP-p15 peptide

Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2024-09, Vol.112 (9), p.1399-1411
Hauptverfasser: Ureiro-Cueto, Guadalupe, Rodil, Sandra E, Santana-Vázquez, Maricela, Hoz-Rodriguez, Lia, Arzate, Higinio, Montoya-Ayala, Gonzalo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 μg/mL) displayed the ability to adsorb onto the aTiO surface, increasing the roughness and maintaining the hydrophilicity of the aTiO surfaces. The physical adsorption of CAP-p15 onto the aTiO surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.37676