Machine learning‐based methods for joint detection‐channel estimation in OFDM systems

In this work, two machine learning (ML)‐based structures for joint detection‐channel estimation in OFDM systems are proposed and extensively characterized. Both ML architectures, namely Deep Neural Network (DNN) and Extreme Learning Machine (ELM) are developed for provide improved data detection per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Internet technology letters 2023-05, Vol.6 (3), p.n/a
Hauptverfasser: Junior, Wilson de Souza, Abrão, Taufik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, two machine learning (ML)‐based structures for joint detection‐channel estimation in OFDM systems are proposed and extensively characterized. Both ML architectures, namely Deep Neural Network (DNN) and Extreme Learning Machine (ELM) are developed for provide improved data detection performance and compared with the conventional matched filter (MF) detector equipped with the minimum mean square error (MMSE) and least square (LS) channel estimators. The bit‐error‐rate (BER) performance vs computational complexity trade‐off is analyzed, demonstrating the superiority of the proposed DNN‐OFDM and ELM‐OFDM detectors methodologies. Machine learning‐based techniques for channel estimation and detection in OFDM systems with/without cyclic prefix.
ISSN:2476-1508
2476-1508
DOI:10.1002/itl2.404