About a consistency index for pairwise comparison matrices over a divisible alo-group

Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2012-02, Vol.27 (2), p.153-175
Hauptverfasser: Cavallo, B., D'Apuzzo, L., Squillante, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 153
container_title International journal of intelligent systems
container_volume 27
creator Cavallo, B.
D'Apuzzo, L.
Squillante, M.
description Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/int.21518
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_int_21518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_1MPJXCX1_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3078-7e0ee11d06dad5b71b261f78b5620da5431a58d02ce1e3e2199c42462c3e968b3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqUw8AZeGdL62knsjFUFpagUhlZ0sxzHQYY0juz07-1JKbAx3eGe8w0HoVsgAyCEDm3dDigkIM5QD0gmIgBYnaMeESKOBHB2ia5C-CAEgMdJDy1Hudu0WGHt6mBDa2p9wLYuzB6XzuNGWb-zwXTvdaO8Da7Ga9V6q03Abmt8ZxZ2a4PNK4NV5aJ37zbNNbooVRXMzc_to-XD_WL8GM1eJtPxaBZpRriIuCHGABQkLVSR5BxymkLJRZ6klBQqiRmoRBSEagOGGQpZpmMap1Qzk6UiZ310d9rV3oXgTSkbb9fKHyQQeewhux7yu0fHDk_szlbm8D8op_PFrxGdjGOX_Z-h_KdMOeOJfJtPJDy_Pq3GK5CUfQGqCnH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About a consistency index for pairwise comparison matrices over a divisible alo-group</title><source>Access via Wiley Online Library</source><creator>Cavallo, B. ; D'Apuzzo, L. ; Squillante, M.</creator><creatorcontrib>Cavallo, B. ; D'Apuzzo, L. ; Squillante, M.</creatorcontrib><description>Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.21518</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><ispartof>International journal of intelligent systems, 2012-02, Vol.27 (2), p.153-175</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3078-7e0ee11d06dad5b71b261f78b5620da5431a58d02ce1e3e2199c42462c3e968b3</citedby><cites>FETCH-LOGICAL-c3078-7e0ee11d06dad5b71b261f78b5620da5431a58d02ce1e3e2199c42462c3e968b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.21518$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.21518$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Cavallo, B.</creatorcontrib><creatorcontrib>D'Apuzzo, L.</creatorcontrib><creatorcontrib>Squillante, M.</creatorcontrib><title>About a consistency index for pairwise comparison matrices over a divisible alo-group</title><title>International journal of intelligent systems</title><addtitle>Int. J. Intell. Syst</addtitle><description>Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.</description><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqUw8AZeGdL62knsjFUFpagUhlZ0sxzHQYY0juz07-1JKbAx3eGe8w0HoVsgAyCEDm3dDigkIM5QD0gmIgBYnaMeESKOBHB2ia5C-CAEgMdJDy1Hudu0WGHt6mBDa2p9wLYuzB6XzuNGWb-zwXTvdaO8Da7Ga9V6q03Abmt8ZxZ2a4PNK4NV5aJ37zbNNbooVRXMzc_to-XD_WL8GM1eJtPxaBZpRriIuCHGABQkLVSR5BxymkLJRZ6klBQqiRmoRBSEagOGGQpZpmMap1Qzk6UiZ310d9rV3oXgTSkbb9fKHyQQeewhux7yu0fHDk_szlbm8D8op_PFrxGdjGOX_Z-h_KdMOeOJfJtPJDy_Pq3GK5CUfQGqCnH0</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Cavallo, B.</creator><creator>D'Apuzzo, L.</creator><creator>Squillante, M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201202</creationdate><title>About a consistency index for pairwise comparison matrices over a divisible alo-group</title><author>Cavallo, B. ; D'Apuzzo, L. ; Squillante, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3078-7e0ee11d06dad5b71b261f78b5620da5431a58d02ce1e3e2199c42462c3e968b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavallo, B.</creatorcontrib><creatorcontrib>D'Apuzzo, L.</creatorcontrib><creatorcontrib>Squillante, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavallo, B.</au><au>D'Apuzzo, L.</au><au>Squillante, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About a consistency index for pairwise comparison matrices over a divisible alo-group</atitle><jtitle>International journal of intelligent systems</jtitle><addtitle>Int. J. Intell. Syst</addtitle><date>2012-02</date><risdate>2012</risdate><volume>27</volume><issue>2</issue><spage>153</spage><epage>175</epage><pages>153-175</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/int.21518</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2012-02, Vol.27 (2), p.153-175
issn 0884-8173
1098-111X
language eng
recordid cdi_crossref_primary_10_1002_int_21518
source Access via Wiley Online Library
title About a consistency index for pairwise comparison matrices over a divisible alo-group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20a%20consistency%20index%20for%20pairwise%20comparison%20matrices%20over%20a%20divisible%20alo-group&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Cavallo,%20B.&rft.date=2012-02&rft.volume=27&rft.issue=2&rft.spage=153&rft.epage=175&rft.pages=153-175&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.21518&rft_dat=%3Cistex_cross%3Eark_67375_WNG_1MPJXCX1_2%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true