About a consistency index for pairwise comparison matrices over a divisible alo-group
Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consist...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2012-02, Vol.27 (2), p.153-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pairwise comparison matrices (PCMs) over an Abelian linearly ordered (alo)‐group \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}=(G, \odot, \leq)$\end{document} have been introduced to generalize multiplicative, additive and fuzzy ones and remove some consistency drawbacks. Under the assumption of divisibility of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}, for each PCM A=(aij), a ⊙‐mean vector \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} can be associated with A and a consistency measure \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}, expressed in terms of ⊙‐mean of \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\mathcal{G}$\end{document}‐distances, can be provided. In this paper, we focus on the consistency index \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. By using the notion of rational power and the related properties, we establish a link between \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document}. The relevance of this link is twofold because it gives more validity to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} and more meaning to \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document}; in fact, it ensures that if \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$I_{\mathcal{G}}(A)$\end{document} is close to the identity element then, from a side A is close to be a consistent PCM and from the other side \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\underline{w}_{m}(A)$\end{document} is close to be a consistent vector; thus, it can be chosen as a priority vector for the alternatives. © 2011 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0884-8173 1098-111X |
DOI: | 10.1002/int.21518 |