Contour reconstruction in diffraction tomography

We address the problem of reconstructing the directional derivative and/or the Laplacian of an object function f characterizing a weakly inhomogeneous scatterer directly from data collected in a set of scattering experiments. We employ the Rytov approximation to model the complex phase of the scatte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 1990-06, Vol.2 (2), p.127-133
Hauptverfasser: Ladas, Kostas T., Tsihrintzis, George A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of reconstructing the directional derivative and/or the Laplacian of an object function f characterizing a weakly inhomogeneous scatterer directly from data collected in a set of scattering experiments. We employ the Rytov approximation to model the complex phase of the scattered wavefields and show that a minimum‐norm least‐squares solution can be obtained from the well known filtered backpropagation algorithm of diffraction tomography with appropriate modification of the tomographic filters employed in the filtering step of the algorithm. The procedure is illustrated by a computer simulation study.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.1850020208