An air‐cooled cylindrical Li‐ion 5 × 5 battery module with a novel flow‐diverting arrangement and variable vent positions for electric vehicles: A numerical thermal analysis

Thermal management of lithium‐ion batteries has received a lot of interest in the automobile sector. In commercial electric motor vehicles, an efficient battery cooling arrangement, particularly active cooling approaches, has been chosen as an ideal option. When building battery cooling systems, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2025-01, Vol.54 (1), p.203-222
Hauptverfasser: Suryavanshi, Shweta, Ghanegaonkar, P. M., Wankhede, Sagar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal management of lithium‐ion batteries has received a lot of interest in the automobile sector. In commercial electric motor vehicles, an efficient battery cooling arrangement, particularly active cooling approaches, has been chosen as an ideal option. When building battery cooling systems, the physical structure and arrangement of the battery pack (BP) are vital. The current study presents a revolutionary design of a BP that incorporates cylindrical cells in a square duct and an air‐cooling (AC) medium circulated in its surroundings with the help of variable vents for inlet and outlet. A forced‐AC system is used to test lithium‐ion battery cells grouped in a 5 × 5 configured battery module. To investigate the impact of heat generation on battery thermal performance, a complete thermal analysis was performed at different discharge rates of 0.5, 1, 2, 3, and 4 C. As compared with both inlet vents at an equidistance configuration with an inlet velocity of 12 m/s and a flow rate of 1.210(−2) kg/s, the results show that the proposed design minimizes heat accumulation by enhancing the heat transfer. As a result, the peak temperature and temperature disparity decreased by 6.76% and 85.32%, respectively. A flow‐dispersing disc of 30 mm in size enhances temperature uniformity in comparison to the other intake vent design, hence improving battery safety and longevity.
ISSN:2688-4534
2688-4542
DOI:10.1002/htj.23172