Viscoelastic boundary layer analysis of constant surface temperature plate embedded in saturated porous media

Mathematical models and numerical solutions of Williamson fluid flow under influences of various boundary conditions provide important support to experimental studies in the solar energy field. Therefore, the present study is concerned with the effects of forced convection of the viscoelastic bounda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2023-09, Vol.52 (6), p.4382-4400
Hauptverfasser: Elayyan, Mutaz, Maaitah, Hussein, Quran, Omar, Awad, Ahmad S., Duwairi, Hamzeh M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical models and numerical solutions of Williamson fluid flow under influences of various boundary conditions provide important support to experimental studies in the solar energy field. Therefore, the present study is concerned with the effects of forced convection of the viscoelastic boundary layer on a horizontal plate embedded in saturated porous media subjected to constant surface temperature. The study explores the profiles of shear stress, velocity, temperature, and heat transfer coefficient. The governing equations in nondimensional forms are obtained by using a model of Darcy–Forchheimer–Brinkman and finally are solved numerically by using bvp4c with MATLAB package. The results of the numerical solution show an insignificant rise in the distribution of the velocity boundary layer and shear stress profile as the Darcy parameter is increased, while a decrease in the temperature and Nusselt numbers are found. On the other hand, as the viscoelastic parameter is increased, the Darcy parameter shows a reverse response. Finally, insignificant increases in profiles of boundary layer velocity, temperature, shear stress, and Nusselt number are observed at high values of the Forchheimer number.
ISSN:2688-4534
2688-4542
DOI:10.1002/htj.22881