Two‐dimensional Darcy–Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation

The main objective of the present examination is to design a stable mathematical model of a two‐phase dusty hybrid nanofluid flow over a stretching sheet with heat transfer in a porous medium, and the Darcy–Forchheimer flow is taken into account with viscous dissipation and melting effect. The equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2021-06, Vol.50 (4), p.3934-3947
Hauptverfasser: Mallikarjuna, Hogarehally Basavarajappa, Nirmala, Tigalappa, Punith Gowda, Ramanahalli Jayadevamurthy, Manghat, Radhika, Varun Kumar, Ravikumar Shashikala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of the present examination is to design a stable mathematical model of a two‐phase dusty hybrid nanofluid flow over a stretching sheet with heat transfer in a porous medium, and the Darcy–Forchheimer flow is taken into account with viscous dissipation and melting effect. The equations of motion are reduced to nonlinear ordinary differential equations by considering suitable similarity variables. These dimensionless expressions are solved by a well‐known numerical technique known as Runge–Kutta–Fehlberg fourth–fifth order method. The behavioral study and analysis of the velocity and thermal profile in dual phases (fluid phase and dust phase) for diverse values of parameters are estimated using graphs and tables. The result outcome reveals that the velocity gradient declines in the fluid phase and increases in the dust phase for a rise in values of the velocity interaction parameter. Also, the velocity gradients of the both phases diminish for increasing values of the porosity parameter. Furthermore, it is determined that the increase in the value of melting parameter leads to a decline in the thermal gradient of both phases.
ISSN:2688-4534
2688-4542
DOI:10.1002/htj.22058