Discrete concepts versus error analysis in PDE-constrained optimization

Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik 2010-10, Vol.33 (2), p.148-162
Hauptverfasser: Hinze, Michael, Tröltzsch, Fredi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 148
container_title Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik
container_volume 33
creator Hinze, Michael
Tröltzsch, Fredi
description Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with multipliers satisfies first and second order necessary optimality conditions. In this note we review the state of the art in designing discrete concepts for optimization problems with pde constraints with emphasis on structure conservation of solutions on the discrete level, and on error analysis for the discrete variables involved. As model problem for the state we consider an elliptic pde which is well understood from the analytical point of view. This allows to focus on structural aspects in discretization. We discuss the approaches First discretize, then optimize and First optimize, then discretize, and consider in detail two variants of the First discretize, then optimize approach, namely variational discretization, a discrete concept which avoids explicit discretization of the controls, and piecewise constant control approximations. We consider general constraints on the control, and also consider pointwise bounds on the state. We outline the basic ideas for providing optimal error analysis and complement our analytical findings with numerical examples which confirm our analytical results (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/gamm.201010012
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_gamm_201010012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GAMM201010012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2422-288ba5a8960f5ad93f27063dbfb5e6a774f97778fec1aebbd1b76efcda12fa083</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMvsPpNhObSdj6UdAtJChiNF6SZ6RoUkqOxTKr6dVUcWG7vCWe56uDiHXnA04Y-LmFep6IBjfhXFxQnpcChEJxZJT0mNprCLNU3lOLkJ4Y0xKJXmPZBMXSo8d0rJtSlx3gW7Qh49A0fvWU2hgtQ0uUNfQfDKNdq3QeXANVrRdd65239C5trkkZxZWAa9-b588z6bL8V00f8rux6N5VIrhfk2SFCAhSRWzEqo0tkIzFVeFLSQq0HpoU611YrHkgEVR8UIrtGUFXFhgSdwng8Pf0rcheLRm7V0Nfms4M3sNZq_BHDXsgPQAfLoVbv9pm2y0WPxlowPrQodfRxb8u1E61tK8PGbmIde3-Sxbmjz-ATUIcpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete concepts versus error analysis in PDE-constrained optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hinze, Michael ; Tröltzsch, Fredi</creator><creatorcontrib>Hinze, Michael ; Tröltzsch, Fredi</creatorcontrib><description>Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with multipliers satisfies first and second order necessary optimality conditions. In this note we review the state of the art in designing discrete concepts for optimization problems with pde constraints with emphasis on structure conservation of solutions on the discrete level, and on error analysis for the discrete variables involved. As model problem for the state we consider an elliptic pde which is well understood from the analytical point of view. This allows to focus on structural aspects in discretization. We discuss the approaches First discretize, then optimize and First optimize, then discretize, and consider in detail two variants of the First discretize, then optimize approach, namely variational discretization, a discrete concept which avoids explicit discretization of the controls, and piecewise constant control approximations. We consider general constraints on the control, and also consider pointwise bounds on the state. We outline the basic ideas for providing optimal error analysis and complement our analytical findings with numerical examples which confirm our analytical results (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0936-7195</identifier><identifier>EISSN: 1522-2608</identifier><identifier>DOI: 10.1002/gamm.201010012</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>elliptic optimal control problem ; error analysis ; state &amp; control constraints</subject><ispartof>Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik, 2010-10, Vol.33 (2), p.148-162</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2422-288ba5a8960f5ad93f27063dbfb5e6a774f97778fec1aebbd1b76efcda12fa083</citedby><cites>FETCH-LOGICAL-c2422-288ba5a8960f5ad93f27063dbfb5e6a774f97778fec1aebbd1b76efcda12fa083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgamm.201010012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgamm.201010012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Tröltzsch, Fredi</creatorcontrib><title>Discrete concepts versus error analysis in PDE-constrained optimization</title><title>Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik</title><addtitle>GAMM-Mitteilungen</addtitle><description>Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with multipliers satisfies first and second order necessary optimality conditions. In this note we review the state of the art in designing discrete concepts for optimization problems with pde constraints with emphasis on structure conservation of solutions on the discrete level, and on error analysis for the discrete variables involved. As model problem for the state we consider an elliptic pde which is well understood from the analytical point of view. This allows to focus on structural aspects in discretization. We discuss the approaches First discretize, then optimize and First optimize, then discretize, and consider in detail two variants of the First discretize, then optimize approach, namely variational discretization, a discrete concept which avoids explicit discretization of the controls, and piecewise constant control approximations. We consider general constraints on the control, and also consider pointwise bounds on the state. We outline the basic ideas for providing optimal error analysis and complement our analytical findings with numerical examples which confirm our analytical results (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>elliptic optimal control problem</subject><subject>error analysis</subject><subject>state &amp; control constraints</subject><issn>0936-7195</issn><issn>1522-2608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMvsPpNhObSdj6UdAtJChiNF6SZ6RoUkqOxTKr6dVUcWG7vCWe56uDiHXnA04Y-LmFep6IBjfhXFxQnpcChEJxZJT0mNprCLNU3lOLkJ4Y0xKJXmPZBMXSo8d0rJtSlx3gW7Qh49A0fvWU2hgtQ0uUNfQfDKNdq3QeXANVrRdd65239C5trkkZxZWAa9-b588z6bL8V00f8rux6N5VIrhfk2SFCAhSRWzEqo0tkIzFVeFLSQq0HpoU611YrHkgEVR8UIrtGUFXFhgSdwng8Pf0rcheLRm7V0Nfms4M3sNZq_BHDXsgPQAfLoVbv9pm2y0WPxlowPrQodfRxb8u1E61tK8PGbmIde3-Sxbmjz-ATUIcpU</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hinze, Michael</creator><creator>Tröltzsch, Fredi</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201010</creationdate><title>Discrete concepts versus error analysis in PDE-constrained optimization</title><author>Hinze, Michael ; Tröltzsch, Fredi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2422-288ba5a8960f5ad93f27063dbfb5e6a774f97778fec1aebbd1b76efcda12fa083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>elliptic optimal control problem</topic><topic>error analysis</topic><topic>state &amp; control constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Tröltzsch, Fredi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinze, Michael</au><au>Tröltzsch, Fredi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete concepts versus error analysis in PDE-constrained optimization</atitle><jtitle>Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik</jtitle><addtitle>GAMM-Mitteilungen</addtitle><date>2010-10</date><risdate>2010</risdate><volume>33</volume><issue>2</issue><spage>148</spage><epage>162</epage><pages>148-162</pages><issn>0936-7195</issn><eissn>1522-2608</eissn><abstract>Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with multipliers satisfies first and second order necessary optimality conditions. In this note we review the state of the art in designing discrete concepts for optimization problems with pde constraints with emphasis on structure conservation of solutions on the discrete level, and on error analysis for the discrete variables involved. As model problem for the state we consider an elliptic pde which is well understood from the analytical point of view. This allows to focus on structural aspects in discretization. We discuss the approaches First discretize, then optimize and First optimize, then discretize, and consider in detail two variants of the First discretize, then optimize approach, namely variational discretization, a discrete concept which avoids explicit discretization of the controls, and piecewise constant control approximations. We consider general constraints on the control, and also consider pointwise bounds on the state. We outline the basic ideas for providing optimal error analysis and complement our analytical findings with numerical examples which confirm our analytical results (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/gamm.201010012</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0936-7195
ispartof Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik, 2010-10, Vol.33 (2), p.148-162
issn 0936-7195
1522-2608
language eng
recordid cdi_crossref_primary_10_1002_gamm_201010012
source Wiley Online Library Journals Frontfile Complete
subjects elliptic optimal control problem
error analysis
state & control constraints
title Discrete concepts versus error analysis in PDE-constrained optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20concepts%20versus%20error%20analysis%20in%20PDE-constrained%20optimization&rft.jtitle=Mitteilungen%20der%20Gesellschaft%20f%C3%BCr%20Angewandte%20Mathematik%20und%20Mechanik&rft.au=Hinze,%20Michael&rft.date=2010-10&rft.volume=33&rft.issue=2&rft.spage=148&rft.epage=162&rft.pages=148-162&rft.issn=0936-7195&rft.eissn=1522-2608&rft_id=info:doi/10.1002/gamm.201010012&rft_dat=%3Cwiley_cross%3EGAMM201010012%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true