Discrete concepts versus error analysis in PDE-constrained optimization
Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with mu...
Gespeichert in:
Veröffentlicht in: | Mitteilungen der Gesellschaft für Angewandte Mathematik und Mechanik 2010-10, Vol.33 (2), p.148-162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solutions to optimization problems with pde constraints inherit special properties; the associated state solves the pde which in the optimization problem takes the role of a equality constraint, and this state together with the associated control solves an optimization problem, i.e. together with multipliers satisfies first and second order necessary optimality conditions. In this note we review the state of the art in designing discrete concepts for optimization problems with pde constraints with emphasis on structure conservation of solutions on the discrete level, and on error analysis for the discrete variables involved. As model problem for the state we consider an elliptic pde which is well understood from the analytical point of view. This allows to focus on structural aspects in discretization. We discuss the approaches First discretize, then optimize and First optimize, then discretize, and consider in detail two variants of the First discretize, then optimize approach, namely variational discretization, a discrete concept which avoids explicit discretization of the controls, and piecewise constant control approximations. We consider general constraints on the control, and also consider pointwise bounds on the state. We outline the basic ideas for providing optimal error analysis and complement our analytical findings with numerical examples which confirm our analytical results (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0936-7195 1522-2608 |
DOI: | 10.1002/gamm.201010012 |