A monotone finite volume scheme for advection-diffusion equations on distorted meshes
SUMMARY A new monotone finite volume method with second‐order accuracy is presented for the steady‐state advection–diffusion equation. The method uses a nonlinear approximation for both diffusive and advective fluxes that guarantee the positivity of the numerical solution. The approximation of the d...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2012-07, Vol.69 (7), p.1283-1298 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
A new monotone finite volume method with second‐order accuracy is presented for the steady‐state advection–diffusion equation. The method uses a nonlinear approximation for both diffusive and advective fluxes that guarantee the positivity of the numerical solution. The approximation of the diffusive flux is based on nonlinear two‐point approximation, and the approximation of the advective flux is based on the second‐order upwind method with proper slope limiter. The second‐order convergence rate for concentration and the monotonicity of the nonlinear finite volume method are verified with numerical experiments. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 |
DOI: | 10.1002/fld.2640 |