Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions

SUMMARY The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2012-06, Vol.69 (4), p.802-823
Hauptverfasser: Camata, J.J., Rossa, A.L., Valli, A.M.P., Catabriga, L., Carey, G.F., Coutinho, A.L.G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized for serial or distributed parallel simulations. As representative schemes, we consider the familiar reverse Cuthill–McKee and quotient minimum degree algorithms applied with incomplete factorization preconditioners to CG and GMRES solvers. In the parallel distributed case, reordering is applied to local subdomains for block ILU preconditioning, and subdomains are repartitioned dynamically as mesh adaptation proceeds. Numerical studies for representative applications are conducted using the object‐oriented AMR/C software system libMesh linked to the PETSc solver library. Serial tests demonstrate that global unknown reordering and incomplete factorization preconditioning can reduce the number of iterations and improve serial CPU time in AMR/C computations. Parallel experiments indicate that local reordering for subdomain block preconditioning associated with dynamic repartitioning because of AMR/C leads to an overall reduction in processing time. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.2614