Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems

SUMMARY In this article the calculation tool further developed and implemented in Matlab language by the authors was used to determine some optimal operating conditions in electrical and thermal or electrical terms for two different types of hybrid systems: molten carbonate fuel cells (MCFC)/gas tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2012-02, Vol.36 (2), p.153-165
Hauptverfasser: De Lorenzo, G., Fragiacomo, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY In this article the calculation tool further developed and implemented in Matlab language by the authors was used to determine some optimal operating conditions in electrical and thermal or electrical terms for two different types of hybrid systems: molten carbonate fuel cells (MCFC)/gas turbine with their heat recovery system and the hybrid systems operating in these optimal conditions were analyzed. In the heat recovery system, in both cases, a part of the thermal energy of these gases is used to produce the steam necessary for the MCFC system. The remaining thermal energy is used, in one case, for the production of steam at various levels of pressure and temperature, which feeds a steam bottom plant to produce additional electric energy; in the other case, the same thermal energy is used to produce steam for cogenerative use. The heat recovery system was suitably designed according to the circumstances and the performances and the specific CO2 emissions of the hybrid systems were evaluated. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0363-907X
1099-114X
DOI:10.1002/er.1788